
Matrix Inversion in O(log n) on a Scan-Enhanced Recon�gurable

Mesh Computer

Alberto Moreira Bryant W. York �

College of Computer Science

Northeastern University

Boston, Massachusetts 02115

1 Abstract

With the arrival of the current generation of fast pro-
cessor chips and improved interconnect technology,
low-cost 3-dimensional recon�gurable mesh comput-
ers have become more feasible. They could present
an attractive price/performance option to large su-
percomputers and small clusters of workstations. In
1976 Csanky introduced a parallel algorithm for ma-
trix inversion which executed in O(log2 n) steps on
n4 processors. Csanky's algorithmwas designed for a
CREW PRAM. More recently, Leighton produced an
implementation of Csanky's algorithm for n meshes
of trees which achieves O(log2 n) steps on 4n4 � 3n3

processors.

In this work we show that a 3-dimensional recon�g-
urable mesh with n4 processors can perform Csanky's
matrix inversion algorithm in O(log2 n) steps. With
hardware assist capable of executing Blelloch's +-
scans along one privileged dimension in O(1) time,
Csanky's algorithm for matrix inversion can be per-
formed in O(logn) time on a 3-dimensional recon�g-
urable mesh with n4 processors.

�This author's research was partially supported by ARPA

grant MDA-972-93-1-0023

2 Introduction

2.1 Historical Perspective

It has been known for some time that it is possi-
ble to compute the inverse of a non-singular square
matrix using the Hamilton-Cayley theorem. The
theorem dates from 1853 (W.R.Hamilton) and 1858
(A.Cayley) and is mentioned in many books on Lin-
ear Algebra, see for example [7]. The method re-
quires that the coe�cients of the matrix's character-
istic polynomial be computed prior to the application
of the theorem. One popular method for computing
such coe�cients is attributed to an 1840 paper by
Leverrier [15]: build up a lower triangular matrix
from the traces of increasing powers of the original
matrix and multiply its inverse by a column vector of
the traces. In 1949, Frame [8] presented a recursive
algorithm to invert a matrix based on successively
computing the coe�cients of the characteristic poly-
nomial. A good description of both Leverrier's work
and the Hamilton-Cayley theorem can be found in
section 47 [7].

2.2 Related Work

In 1976 Csanky [6] developed a parallel version of
the Leverrier-Hamilton-Cayley matrix inversion al-
gorithm on a computing model similar to the mod-
ern CREW PRAM. His algorithm runs in O(log2 n)
time and requires O(n4) processors. More recently
Leighton [14] showed an implementation of Csanky's
algorithm where an n � n matrix can be inverted
using n three-dimensional meshes of trees, each with
4n3�3n2 processors. The time complexity of this im-
plementation is also O(log2 n). Leighton points out
that Csanky's algorithmalways produces an exact so-

1



lution but is not numerically stable. There are meth-
ods based upon Newton iteration which are more sta-
ble and use only O(n3) processors but do not always
�nd an exact solution.

In recent years several authors have proposed recon-
�gurable architectures for parallel computers. Cur-
rent recon�gurable parallel architectures generally
follow the SIMD hardware model, where a host com-
puter broadcasts instructions to a (back end) collec-
tion of processors connected by an interconnection
network. What is unique to recon�gurable archi-
tectures is that a portion of the instruction is used
to \recon�gure" the network (processor port connec-
tions) possibly on every instruction cycle. Examples
are CHiP [19], meshes with broadcast buses [11] [20],
Polymorphic Torus [16] and PARBS [21]. More re-
cently, Miller, Kumar, Reisis and Stout [17] proposed
a mesh with a recon�gurable bus which captures fea-
tures of many other recon�gurable architectures un-
der a uni�ed model.

Several algorithms for three or higher dimensional re-
con�gurable meshes have been published. Jang and
Prasanna [10], Nigam and Sahni [18], and Wang,
Chen and Lin [22] proposed algorithms to sort n

values in O(1) time on an O(n3) 3D recon�gurable
mesh. Wang and Chen [21] showed a number of
basic graph algorithms for a 3-dimensional recon�g-
urable mesh, including connected cycles, transitive
closure, and multiplication of boolean matrices, all
in O(1) time. Champion and Rothstein [3] designed
an algorithm for solving the longest common sub-
sequence problem in O(1) time on a 3-dimensional
PARBS. Chung [5] extended 2-dimensional parallel
pre�x computations into higher dimensional recon�g-
urable meshes. Kao, Horng, Wang and Tsai [13] pro-
posed several O(1) basic algorithms for k-dimensional
recon�gurable meshes, such as pre�x sums and ma-
trix transpose, sorting n elements in O(1) time using
O(n5=3) processors and �nding the kth smallest ele-

ment of n m-bit integers in O(m) time.

Low-cost three-dimensional mesh computers are now
becoming feasible with the introduction of the
SHARC single-chip computer [2]. This chip includes
512 kilobytes of on-chip static memory, a peak per-
formance of 120 MFLOPS and six ports that allow
it to be connected in a 3-dimensional mesh con�g-
uration. Boards with 32 or 64 SHARC processors
that plug into a personal computer bus will soon be
available for sale [9].

2.3 Background on Scans

The scan operator was �rst introduced in the late
1950s by Iverson in his APL programming language
[12]. Given a vector V the result of its sum-scan,
denoted in APL by +nV , is another vector contain-
ing the partial sums of the elements taken from left
to right. The "backslash" is treated as an operator
which applies the "+" function to pairs of elements.
The pairs of elements are selected in the following
way: The �rst pair of elements consists of the "iden-
tity" for the chosen binary function (zero in the case
of +) and the �rst element of the vector. The re-
sult of that binary operation becomes the �rst com-
ponent of the result vector. It is also used as one
of the operands along with the next vector element
in the next application of the "+" function. This
process is continued until the elements of the vec-
tor are exhausted. The example below shows a sim-
ple sum-scan of the 8-vector consisting of the �rst 8
positive integers. The scan operator is conceptually
well-de�ned for any binary associative function with
identity.

V = 1 2 3 4 5 6 7 8
+nV = 1 3 6 10 15 21 28 36

Blelloch [1] developed the concept of scans as primi-
tive parallel operations, and stated a number of basic
parallel algorithms in terms of scans. He presented a
hardware design that implements scans along a row
of processors in O(1) time and showed that when
this hardware assist is present, many scan-based al-
gorithms experience a reduction of logN in their
asymptotic bounds when compared to non-scan algo-
rithms. It is well known that, without special hard-
ware assist, a scan operation on an N -element vector
can be done in O(logN ) parallel steps on an N pro-
cessor PRAM.

Blelloch also utilized the notion of "segmented scans"
where a vector of boolean values is used to specify
segments within the original vector and the scan is
applied to each segment independently. With these
and other tools, he presented several basic algorithms
in terms of scans, showing that asymptotic speed
bounds can be improved if scan operations can be im-
plemented in constant time. He showed a hardware-
level state machine design for scans and estimated
that on a 64x64 mesh with a 100ns clock time, a
scan on a 32-bit �eld would require 5 microseconds.

2



This time is in the order of magnitude of a complex
machine instruction such as multiply or divide.

2.4 Summary of this Paper

In this paper we show that Csanky's algorithm can be
implemented on a 3-dimensional recon�gurable mesh
in O(log2 n) steps on n4 processors. If the recon�g-
urable mesh has hardware assist for scans along one
of its dimensions, then the algorithm runs in O(logn)
time.

We state some basic 3-dimensional data movement
algorithms for a recon�gurable mesh, and use them to
show that without scan enhancement on an n�n�n

recon�gurable mesh (1) two n � n matrices can be
multiplied in O(logn) time, and (2) an n � n tri-
angular matrix can be inverted in O(log2 n) time,
while in an n2 � n� n mesh (3) it is possible to �nd
the �rst n powers of an n � n matrix in O(log2 n)
time. As a consequence, a 3-dimensional recon�g-
urable mesh without scan-assisting hardware can per-
form Csanky's algorithm within his original time and
processor bounds.

We then consider a 3-dimensional scan-enhanced re-
con�gurable mesh and show that multiplication of
two n� n matrices can be done in O(1) time. Hence
inverting an n � n triangular matrix and computing
n increasing powers of an n� n matrix can be done
in O(logn) time. This lowers the bounds for a full
matrix inversion to O(logn) time on n4 processors.

3 Multidimensional Recon�g-

urable Meshes

An n-dimensional Recon�gurable Mesh is an n-
dimensional array of processors arranged as a hyper-
rectangle of dimensions d1 � d2 : : :� dn where each
processor is connected to its 2n neighbors. Two pro-
cessors Pd1;:::;dn and Pe1;:::;en are neighbors if di = ei
for all 1 � i � n but one, say, k, and either
jdk � ekj = 1 or jdk � ekj = n � 1. In the �rst case
the connection is called a direct connection, while in
the second case it is a wraparound connection.

We assume a coordinate space where the mesh is
"stenciled" along each dimension. Considering an
n � : : : � n mesh and 1 � i � n, then Pd1;:::;di:::;dn

and Pe1;:::;ei;:::;en are the same processor if whenever

di 6= ei there exists a �nite integer ki such that
ei = kin+di. This stresses the fact that wraparound
connections are also neighbor-to-neighbor connec-
tions when viewed in a more general way and allows
us to see the mesh as a much larger virtual mesh.

Maresca and Li's polymorphic torus [16] is used as
a reference architecture, and is extended into multi-
ple dimensions. Each processor has n internal buses,
n input ports and n output ports. Connections to
neighbors are assumed to be bi-directional and half-
duplex. Each dimension has one internal bus and two
ports, and neighboring ports of neighboring proces-
sors are connected.

Recon�guration is attained by allowing each port to
optionally connect to each of the n internal buses, es-
tablishing data paths along a dimension or across into
another dimension. Each internal bus has a control
register with 2n bits, one per existing port, allowing
each port to connect to any of the internal buses. If a
port connects to two or more buses at the same time,
those buses become interconnected. Figure 1 shows
a 2-dimensional recon�gurable mesh processor, while
�gure 2 shows a 3-dimensional processor. Figure 3
shows an 8� 8 2-dimensional recon�gurable mesh.

For example, a 2-dimensional torus would have two
buses, let's call them Longitudinal and Transversal.
Each bus has a control register with four bits, cor-
responding to 4 gates that allow North, South, East
and West ports to optionally connect to the bus. Es-
tablishing row and column buses requires every pro-
cessor to connect its North and South ports to the
Transversal bus, and its East and West ports to the
Longitudinal bus. Establishing NE and SW L-shaped
connections is done by having a processor connect its
North and East port to the processor's Transversal
bus and its South and West ports to the processor's
Longitudinal bus.

4 Csanky's Algorithm

In his 1976 paper, Csanky [6] described a paral-
lel implementation of the well known mathemati-
cal algorithm to compute the inverse of a matrix
using the Cayley-Hamilton theorem and Leverrier's
lemma. Csanky used a computing model which is es-
sentially equivalent to a CREW PRAM. We summa-
rize Csanky's algorithm for the bene�t of the reader:

3



&%
'$
��
��
uu
uuuu u uW E

N

S

Figure 1: A 2-dimensional recon�gurable processor.
The straight lines stand for the four ports. The cir-
cles represent the two buses, while the solid dots show
the recon�guration switches that can be opened or
closed.

&%
'$
��
��
����

��

Q
QQ

Q
QQ

�
��

ssssss
sssssssss s
ss
N

S

W

E

B

F

Figure 2: A 3-dimensional recon�gurable processor.
The ports are North, South, East, West, Front and
Back.

iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p
iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p
iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p
iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p
iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p
iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p
iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p
iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p iepppppp p p

Figure 3: A 2-dimensional recon�gurable mesh.
The wraparound connections were omitted for the
sake of clarity.

1. For an n� n matrix A, compute all powers Ak,
1 � k � n.

2. Compute the traces tk of each Ak by summing
its diagonal elements.

3. Leverrier's lemma states that

2
66664

1
t1 2
t2 t1
...

...
tn�1 tn�2 ::: t1 n

3
77775

2
66664

c1
c2
c3
...
cn

3
77775 = �

2
66664

t1
t2
t3
...
tn

3
77775

From which the coe�cients ck of A's character-
istic equation are computed as c = T�1t, where
T is the above matrix of traces.

4. Applying the Hamilton-Cayley theorem the in-
verse A�1 is:

A�1 = �(An�1 + c1A
n�2 + :::+ cn�1I)=cn

Step 1 takes O(log2 n) steps and requires O(n4) pro-
cessors. Step 2 is done in O(logn) time on O(n2)
processors. For step 3, inversion of the triangular
matrix T takes O(log2 n) steps on O(n3) processors.
Step 4 can be done in O(logn) time on O(n3) pro-
cessors. This gives an O(log2 n) time complexity on
O(n4) processors.

Leighton [14] proposed an implementation of
Csanky's algorithm for n 3-dimensional meshes of
trees that runs in O(log2 n) time. Each mesh of trees
requires 4n3 � 3n2 processors. Leighton's implemen-
tation computes Ak in O(log2 n) time, computes the
traces tk of each of these matrices, and uses a 3-
dimensional mesh of trees to invert the T matrix in
O(log2 n) time by partitioning the matrix as follows:

T =

�
T1 0
T3 T2

�

Therefore

T�1 =

�
T�1
1

0
X T�1

2

�

where X = �T�1
2

T3T
�1

1
. This method is amenable

to a recursive implementation where T is inverted
in logn steps, each requiring two matrix multiplica-
tions.

4



5 3-Dimensional Data Move-

ment on the Recon�gurable

Mesh

We will now de�ne some basic 3-dimensional matrix
movement operations, which will be used as building
blocks of our matrix algorithms. These operations
are all executed in a constant number of steps be-
cause their implementations take advantage of the
recon�gurable buses and circuit switching technol-
ogy. Let f be a data movement function such that
f : A ! A maps all processors in the set A in a
one-to-one fashion, then f will be executed in O(1)
time if two conditions hold: (1) for every processor
in A we can set up the recon�gurable buses to de-
�ne a path to its image under f , and (2) all paths
from processors to their images under f are mutually
disjoint.

Assume we have an n� n� n mesh with a superim-
posed 3-dimensional coordinate system. This coordi-
nate system will have three axes: r (for row), c (for
column) and p (for plane). Assume we have an n�n

matrix M with one element per processor in a plane
P . If m11 is stored in processor PRCP then mrc is
contained in processor P(R+r�1)(C+c�1)P . The same
element can be expressed in "local" coordinates, that
is, relative to the top left corner of the matrix, as
Prc0.

De�nition 1: A forward rotation around the row
axis r moves every matrix element from processor
Prc0 to processor Pr0c (counterclockwise rotation) or
from Prc0 to Prnc (clockwise rotation). If before the
rotation all elements were in plane rc, after the ro-
tation all elements are in plane rp. The matrix can
be similarly rotated around the column axis or plane
axis. See Figure 4 for an example.

De�nition 2: A reverse rotation is one where the
rows along the rotation axes are transposed. In
other words, a reverse rotation is a rotation where
the pivot axis is translated while the rotation is be-
ing performed. Reverse rotating around the row axis
moves elements from Prc0 to Pr0(n�c) (clockwise) or
to Prn(n�c) (counterclockwise). The matrix can also
be reverse rotated around the column axis or plane
axis. A reverse rotation is equivalent to a rotation
followed by a translation, see Figure 5 for an exam-
ple.

De�nition 3: A translation copies the entire ma-
trix along a given axis. Translating along the row

-

6

�
�
�	

r

p

c
�
�
�

�
�
�

m� -

n

��	

�

�

r
r�
r

r�
r

r�
r

r

Figure 4: Rotation of an m�n matrix around the
c-axis.

�
��

�
��

�
��

�
��

�

s
s
�

s

s

m� -

n

��	

�

Figure 5: Reverse Rotation of an m � n matrix
around the c-axis.

axis copies elements from Prcp into P(r+t)cp, where
t is the translation distance. Translating the ma-
trix along the column axis copies Prcp into Pr(c+t)p.
A broadcast occurs when a matrix is simultaneously
translated into all planes perpendicular to a given
axis. A restricted broadcast causes the matrix to be
translated only within the bounds established by the
recon�guration hardware. See Figure 6 for an exam-
ple.

De�nition 4: A matrix roll consists of a rotation
followed by a broadcast. A reverse roll consists of a
reverse rotation followed by a broadcast. For exam-
ple, a matrix occupying plane rc would be rotated
into plane cp and then broadcast along all planes
perpendicular to dimension r. See �gure 7 for an
example.

De�nition 5: A matrix shift by (t; u; v) consists in
moving each element from Prc0 to P(r+t)(c+u)v.

Lemma 1: In an n � n � n 3-dimensional recon�g-
urable mesh, translation and broadcast of an n � n

matrix can be done in O(1) time.

Proof: Assume a matrix on plane rc to be translated
along the p-axis. We can establish buses along the p
dimension, so that each Prcp can be broadcast along

5



�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

-s s s r

Figure 6: Translation of a matrix along an axis.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

s

sssr

Figure 7: Rolling a matrix.

its respective p bus and be picked up as Prc(p+t) by
every p+ t that is a receiver of the broadcast.

Lemma 2: In an n � n � n 3-dimensional recon�g-
urable mesh, forward or reverse rotation of an n� n

matrix can be done in O(1) time.

Proof: We must forward rotate the matrix around
its row axis. Using local indexes, a rotation around
the row axis copies each matrix element Prc0 into its
rotated image Pr0c. For each Prc0 we can establish
a 2-step path: a bus along the plane axis from Prc0

to Prcc, followed by another bus along the column
axis Prcc to Pr0c. For each original matrix element
Prc0 these buses are unique; all elements Prc0 can be
moved in parallel, either in one or in two steps de-
pending on whether or not the recon�guration hard-
ware allows 90-degree turns.

Reverse rotation is similar. We now have to move el-
ements Prc0 to Pr0(n�c). This requires one p-axis bus
from Prc0 to Prc(n�c), and a c-axis bus from Prc(n�c)

to Pr0(n�c). These lines are also unique for each ele-
ment, and all elements can be moved in parallel.

Lemma 3: In an n � n � n 3-dimensional recon�g-
urable mesh an n � n matrix can be rolled in O(1)
time.

Proof: Forward rotation, reverse rotation and broad-

cast are all O(1) operations.

Lemma 4: In an n � n � n 3-dimensional recon�g-
urable mesh an n � n matrix can be shifted in O(1)
time.

Proof: To shift a matrix originally in the rc plane,
perform the following steps: Rotate the matrix
around the row axis, translate it to the desired row,
rotate the matrix around the plane axis, translate
it to the desired column, rotate it around the plane
axis and roll it into the desired plane. Each of these
operations is done in O(1) time.

The lemmas above show that it is possible to move a
matrix around a recon�gurable mesh in a wide vari-
ety of ways in O(1) asymptotic time. This exibility
allows us to design fast algorithms.

6 Matrix Multiplication

Theorem 1: In an n � n � n recon�gurable mesh
an R � P and a P � C matrix can be multiplied in
O(logP ) time, for all 1 � R � n, 1 � C � n and
1 � P � n.

Proof: The algorithm is similar to the ones used
for hypercubes or meshes of trees, see for example
Leighton [14], section 2.4.2.

Assume an R�P matrix A in plane rp, and a P �C

matrix B in plane pc. Assume also that elements
A00 and B00 are located at the same processor; if
they are not, the matrices can be shifted and rotated
into position in O(1) time according to lemmas 1-
4. We have now matrices A and B making up two
orthogonal planes of a coordinate system rcp. Broad-
cast matrix A along the c-axis and broadcast matrix
B along the plane r-axis; this is done in O(1) time
according to lemma 1.

At this point, every processor Prcp has both Arp and
Bpc; every row parallel to the p axis contains all the
pairs required to compute Crc =

Pn
p=1ArpBpc. All

products are computed in parallel, and +-scan along
the p-axis will compute all Crc in parallel in O(logP )
time. The product matrix sits now in plane rc, from
where it can be moved by shifts and/or rotations back
to its required destination in O(1) time.

Theorem 2: In a n � n � n recon�gurable mesh
assisted by scan-optimizing hardware along all buses
in one dimension, an R�P and a P �C matrix can

6



�
�
�

��	

6

�
�
�
��

-

�
�
�
���

�

�
�

6 6

6

P
p arpbpc

arp

bpc
p

c

r

Figure 8: Matrix Multiplication on the 3-dimensional
Recon�gurable Mesh. Matrix A lies on the rp plane
while matrix B is in the pc plane. The products are
added along the p axis and the result appears in the
rc plane.

be multiplied in O(1) time.

Proof: Assume that the scan-optimizing hardware is
capable of performing +-scans alongside the p-axis
in O(1) time. The matrices being multiplied can be
moved to planes rp and pc in in O(1) steps according
to lemmas 1-4. Data is then broadcasted to the de-
sired locations in O(1) steps. The +-scan along the
p axis is now done in O(1) time, leaving the result
matrix on the rc plane.

The scan-assisting hardware is independent of the re-
con�guration hardware for the recon�gurable buses,
and typically acts on the whole bus. To make sure
that intermediate "o�" processors do not alter the
results of a scan, it is possible to set their scanned
values to zero. If the scan hardware operates in con-
stant time, the additional processors will not alter
the asymptotic running time of the algorithm.

7 Inverting a Lower Triangular

Matrix

Theorem 3: In an n � n � n recon�gurable mesh
a lower-triangular n � n matrix can be inverted in
O(log2 n) steps.

Proof: We partition our matrix T in a similar fashion

to Leighton's algorithm ([14], section 2.4.3),

T =

�
A 0
C B

�

Where A, B and C are n=2� n=2, and A and B are
lower triangular. The inverse is given by

T�1 =

�
A�1 0
X B�1

�

where X = �B�1CA�1. If the matrix is originally
on the rc plane, recursively invert A and B in paral-
lel, then do the multiplications: rotate A�1 around
the r-axis, multiply it by C, leave the result in the
cp plane, multiply this result by B�1, leave the re-
sult in the rp plane, shift and rotate the resulting
matrix into the required plane. By Theorem 1 each
multiplication is done in O(logn)time. We have

Tn = Tn=2 + O(logn)

That is, Tn = O(log2 n).

Theorem 4: In a n � n � n recon�gurable mesh
assisted by scan-optimizing hardware along all buses
in one dimension, a lower triangular n�n matrix can
be inverted in O(logn) steps.

Proof: Using lemmas 1-4, rotate and translate the
matrices in O(1) steps so that the axis common
to both matrices is along the optimizing hardware.
Each matrix multiplication is then performed in O(1)
time, according to theorem 2. Therefore the recur-
rence becomes

Tn = Tn=2 + O(1)

That is, Tn = O(logn).

8 Computing the increasing

powers of a matrix

This is the step in the algorithm where a n4 proces-
sors are required. Assume that we want to compute
increasing powers Ak of a matrix, for 1 � k � n.
Each Ak is an n�n matrix, and the n matrix powers
require n mesh planes. To perform all the required
matrix multiplications in parallel and keep a loga-
rithmic execution time, we need to allow a cube of
n3 processors for each matrix plane, so that matrix
multiplications can use the algorithm of Theorems 1
and 2. Therefore, we need an n2 � n� n mesh, that
is, n4 processors for this sub-algorithm.

7



Theorem 5: In a 3-dimensional n2 � n � n recon-
�gurable mesh it is possible to compute the �rst n

increasing powers of a matrix A in O(log2 n) time.

Proof: Assume that matrix A lies on the rc plane,
and that we have n2 planes along the p axis. Assume
also that the n powers Ak, 1 � k � n will lay on
planes parallel to the rc plane, so that p is the scan
direction.

The algorithm starts by broadcasting A along the p
axis so that every plane has its own copy. Planes kn,
0 � k � n � 1, all have their own copies of matrix
A, and each is the boundary of a cube containing
n3 processors where matrix multiplications will take
place. The recon�gurable buses are used to make the
machine look like an n � n � n machine where each
plane actually contains a subordinate n�n�n work
structure.

A standard pre�x algorithm will generate all powers
of A at the correct planes. Each matrix multipli-
cation is performed by rotating the current multi-
plicand around the r axis and then using the ma-
trix multiplication algorithm described in Theorem
1. The partial products are then rotated back into
the rp plane in O(1) steps. The fact that the power
matrices are separated from each other by n planes
doesn't slow down the rest of the algorithm because
the recon�gurable buses can be stretched to bridge
over the unused processors.

Theorem 6: In a 3-dimensional n2�n�n recon�g-
urable mesh endowed with hardware +-scans along
one of its axes, it is possible to compute the �rst n
increasing powers of a matrix in O(logn) time.

Proof: According to Theorem 4, each of the logn
matrixmultiplication steps is now done inO(1) steps,
including any required rotations and translations.

9 Full Matrix Inversion on the

Recon�gurable Mesh

Let us now consider the full matrix inversion algo-
rithm. An implementation of Csanky's algorithm for
the recon�gurable mesh with +-scans along one di-
mension executes as follows:

1. Compute all ascending powers Ak, 1 � k � n. Ac-
cording to Theorems 5 and 6, this is done inO(log2 n)
in the standard recon�gurable mesh and in O(logn)

if the mesh is scan-assisted.

2. Compute the traces tk of each Ak. This requires
each Ak to perform a +-scan along its main diagonal.
Because each Ak now lies in a separate plane, all
scans are done in parallel in O(logn) time.

3. Compute the coe�cients of A's characteristic
polynomial by applying Leverrier's lemma. This re-
quires inverting a lower triangular matrix, which is
accomplished via theorems 3 and 4 in O(log2 n) steps
in the recon�gurable mesh and in O(logn) time when
the mesh is scan-assisted. The matrix-vector multi-
plication to compute the actual coe�cients doesn't
a�ect the asymptotic time of this step.

4. Apply the Hamilton-Cayley theorem to compute
the matrix inverse:

A�1 = �(An�1 + c1A
n�2 + :::+ cn�1I)=cn

This requires broadcasting each coe�cient ci=cn into
Ai's plane, multiplying all elements of each Ai by its
coe�cient in parallel (this is done in O(1) time), and
then adding all matrices via a +-scan. The +-scan
dominates the asymptotic time, it runs in O(logn)
time in the recon�gurable mesh and in O(1) when
the mesh is scan-assisted.

Each step above can be done in n3 processors, except
for step 1 which needs n4 processors. This leads to

Theorem 7: Inverting an n� n matrix can be per-
formed inO(log2 n) time on a 3-dimensionaln2�n�n
recon�gurable mesh, or in O(logn) time if the mesh
includes hardware assists to perform +-scans in O(1)
time alongside all buses of one privileged dimension.

10 Conclusions

We have shown that a 3-dimensional recon�gurable
mesh can perform Csanky's matrix inversion algo-
rithm in O(log2 n) time using n4 processors. We have
also shown that if scan-assisted hardware is used to
allow+-scans to be performed in O(1) time alongside
one privileged dimension, the recon�gurable mesh
will perform full matrix inversion in O(logn) time
using n4 processors.

Algorithms for 3-dimensional recon�gurable mesh
computers are easier to specify when we use a set
of primitive data movement operations. Two of the
future goals of this work are (1) the de�nition of a

8



broader set of basic operations required to e�ciently
implement matrix algorithms for three- and higher-
dimensional recon�gurable machines and (2) the de-
velopment of an associated programming language.

References

[1] G. Blelloch, Scans as Primitive Parallel Opera-
tions, IEEE Transactions on Computers, Vol 38
no 11, 1987.

[2] J. E. Brewer, L. G. Miller, I. H.Gilbert,
J. F.Melia, D. Garde and J. E. DeMaris, A
Monolithic Processing Subsystem, IEEE Trans-

actions on Components, Packaging, and Manu-

facturing Technology - Part B, Vol. 17, No. 3,
August 1994.

[3] G. M. Champion and J. Rothstein, Immediate
Parallel Solution of the longest common Subse-
quence Problem, Proc. International Conference
on Parallel Processing, pp. 70-77, 1987.

[4] E. Chu, A. George and D. Quesnel, Parallel Ma-
trix Inversion on a Subcube-grid", Parallel Com-

puting 19, pp. 243-256, 1993.

[5] K. L.Chung, Pre�x Computations on a Gener-
alized Mesh-Connected Computer with Multiple
Buses, IEEE Transactions on Parallel and Dis-

tributed Systems, Vol 6 No 2, February 1995.

[6] L. Csanky, Fast Parallel Matrix Inversion Algo-
rithms, SIAM Journal of Computing, vol 5, pp.
618-623, 1976.

[7] D. K. Faddeev and V. N. Faddeeva, Computa-

tional Methods of Linear Algebra, W. H. Free-
man and Company, San Francisco, 1963.

[8] J. S. Frame, A simple Recursion Formula for
inverting a Matrix, Bulletin of the American

Mathematical Society, 55, p. 1045, 1949.

[9] Integrated Computing Engines, Inc., Technical
Report: The MeshSP Mesh Multiprocessing and
the ICE RealTime Engine, 1995.

[10] J. W. Jang and V. K. Prasanna, An Opti-
mal Sorting Algorithm on Recon�gurable Mesh,
Journal of Parallel and Distributed Computing,
25, pp. 31-41, 1995.

[11] W. M. Gentleman, Some Complexity Results
for Matrix Computations on Parallel Processors,
Journal of the ACM, vol 25, pp. 112-115, 1978.

[12] K. E. Iverson, Notation as a Tool of Thought,
1979 Turing Award Lecture, ACM Turing

Award Lectures: The First Twenty Years, ACM
Press, 1987, pp. 339-389.

[13] T. W. Kao, S. J. Horng, Y. L. Wang and
H. R. Tsai, Designing E�cient Parallel Algo-
rithms on CRAP, IEEE Transactions on Par-

allel and Distributed Systems, Vol. 6, No. 5, pp.
554-560, May 1995.

[14] T. Leighton, Introduction to Parallel Algorithms

and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann Publishers, San Mateo, Cal-
ifornia, 1992.

[15] U. LeVerrier, Sur les variations seculaires des
elements des Orbites, J. Math., 1840.

[16] M. Maresca and H. Li, Connection Autonomy
in SIMD Computers: A VLSI Implementation,
Journal of Parallel and Distributed Computing,
No 7, 1989, pp. 302-320.

[17] R. Miller, V. K. Prasanna-Kumar, D. I. Rei-
sis and Q. F. Stout, Parallel Computations on
Recon�gurable Meshes, IEEE Transactions on

Computers, Vol 42 No 6, pp. 678-692, June 1993.

[18] M. Nigam and S. Sahni, Sorting n Numbers on
n�n Recon�gurable Meshes with Buses, Journal
of Parallel and Distributed Computing, 23, pp.
37-48, 1994.

[19] L. Snyder, Introduction to the Highly Parallel
Computer, IEEE Computer, pp. 47-56, January
1982.

[20] Q. F. Stout, Mesh-Connected Computers with
Broadcasting, IEEE Transactions on Comput-

ers, Vol. C-32 No. 9, September 1983.

[21] B. F. Wang and G. H. Chen, Constant Time Al-
gorithms for the Transitive Closure and Some

Related Graph Problems on Processor Arrays
with Recon�gurable Bus Systems, IEEE Trans-

actions on Parallel and Distributed Systems, Vol
1 No 4, pp. 500-507, October 1990.

[22] B. F. Wang, G. H. Chen and F. C. Lin, Con-
stant Time Sorting on a Processor Array with
a Recon�gurable Bus System, Information Pro-

cessing Letters, vol 34 no 4, pp. 187-192, April
1990.

9


